Brace blocks from bilinear maps and liftings of endomorphisms

نویسندگان

چکیده

We extend two constructions of Alan Koch, exhibiting methods to construct brace blocks, that is, families group operations on a set $G$ such any them induce skew structure $G$. these by using bilinear maps and liftings endomorphisms quotient groups with respect central subgroup. provide several examples the construction, showing there are blocks which consist distinct given cardinality. One we give yields an answer question Cornelius Greither. This example exhibits sequence $p$-adic Heisenberg $(G, \cdot)$ converges original operation "$\cdot$".

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arens regularity of bilinear maps and Banach modules actions

‎Let $X$‎, ‎$Y$ and $Z$ be Banach spaces and $f:Xtimes Y‎ ‎longrightarrow Z$ a bounded bilinear map‎. ‎In this paper we‎ ‎study the relation between Arens regularity of $f$ and the‎ ‎reflexivity of $Y$‎. ‎We also give some conditions under which the‎ ‎Arens regularity of a Banach algebra $A$ implies the Arens‎ ‎regularity of certain Banach right module action of $A$‎ .

متن کامل

Liftings of Holomorphic Maps into Teichmüller Spaces

We study liftings of holomorphic maps into some Teichmüller spaces. We also study the relationship between universal holomorphic motions and holomorphic lifts into Teichmüller spaces of closed sets in the Riemann sphere.

متن کامل

Liftings of Reduction Maps for Quaternion Algebras

We construct liftings of reduction maps from CM points to supersingular points for general quaternion algebras and use these liftings to establish a precise correspondence between CM points on indefinite quaternion algebras with a given conductor and CM points on certain corresponding totally definite quaternion algebras.

متن کامل

Bilinear maps and convolutions

Let X,Y, Z be Banach spaces and let u : X×Y → Z be a bounded bilinear map. Given a locally compact abelian group G , and two functions f ∈ L(G,X) and g ∈ L(G,Y ), we define the u -convolution of f and g as the Z -valued function f ∗u g(t) = ∫ G u(f(t− s), g(s))dμG(s) where dμG stands for the Haar measure on G . We define the concepts of vector-valued approximate identity and summability kernel ...

متن کامل

Practical Certificateless Aggregate Signatures from Bilinear Maps

Aggregate signature is a digital signature with a striking property that anyone can aggregate n individual signatures on n different messages which are signed by n distinct signers, into a single compact signature to reduce computational and storage costs. In this work, two practical certificateless aggregate signature schemes are proposed from bilinear maps. The first scheme CAS-1 reduces the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2022

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.08.001